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ABSTRACT

We used transmittance images and different learning algo-
rithms to classify insect damaged and un-damaged wheat
kernels. Using the histogram of the pixels of the wheat im-
ages as the feature, and the linear model as the learning al-
gorithm, we achieved a False Positive Rate (1-specificity) of
0.2 at the True Positive Rate (sensitivity) of0.8 and an Area
Under the ROC Curve (AUC) of0.86. Combining the linear
model and a Radial Basis Function Network in a committee
resulted in a FP Rate of0.1 at the TP Rate of0.8 and an
AUC of 0.92.

1. INTRODUCTION

Infested wheat kernels cause loss of quality in the wheat
products. They also cause a lot more damage if they are put
into storage with other kernels. It is important to be able to
identify insect damaged kernels so proper decisions can be
made about them.

Current methods of insect detection such as cracking
and flotation [1], infraredCO2 analysis [2], immunologi-
cal methods [3], NIR [4], and x-ray inspection [5] can be
laborious, slow, expensive, and ineffective at distinguish-
ing a sound kernel from a kernel that is internally infested.
It is possible that the use of acoustics [6] to detect insects
may serve as an alternative which would allow for recogni-
tion of kernels where the insect has already emerged as well
as those in which the insect is still living inside the kernel.
In this paper we describe a method to identify insect dam-
aged kernels based on transmittance images. This method
is fast and inexpensive compared with the other methods.
Recently, reflection images of kernels have been used for
identification of different types of grains [7].

We first segmented the individual wheat kernels from
the original transmittance images. Then we used the his-
togram of pixel intensities from each kernel to decide if it
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was insect damaged or not. We used a number of differ-
ent algorithms, namely the linear model, quadratic model,
k-nearest neighbor, linear model with weight decay and Ra-
dial Basis Function Network. Linear model was the best of
all the algorithms with a False Positive Rate (1-specificity)
of 0.2 at the True Positive Rate (sensitivity) of0.8 and an
Area Under the ROC Curve (AUC) of0.86 ± 0.03. Al-
though the radial basis function network performed worse
than the linear mode (an AUC of0.79 ± 0.05), a commit-
tee of a linear model and a radial basis function resulted in
an improved FP Rate of0.1 at the TP Rate of0.8 and an
AUC of 0.92. We also experimented with K-nearest neigh-
bor model, quadratic model and linear model with weight
decay (ridge regression). All of these learning methods re-
sulted in worse performance than the linear model.

2. WHEAT IMAGES AND FEATURES

Hard red winter wheat (H2) was used to obtain the images.
The insect damaged kernel images were taken from wheat
infested with rice weevil and kept at about a moisture of
11%. Transmittance images were taken as 800 pixels/inch
tif images using an Epson Expression 1680 scanner. The
exposure was set to 20 and gamma to 1.22.

The original un-damaged and insect damaged wheat ker-
nel images were taken all together in two different shots.
First we segmented each single kernel out of the original
pictures using the blue component of the RGB. We obtained
355 good and 364 insect damaged kernels. We rotated each
image so they had the maximum height and minimum width.
Please see figure 1 for some sample images. The back-
ground color was white, so we determined the borders of
each wheat image based on the background color. The re-
flectance along the borders of the image were affecting the
features, so we cropped 10 pixels from each pixel row on
each side of the wheat.

The histogram of red component of the pixels colors
over each wheat image was used as the input feature for
the learning algorithm. The 256 different Red components
were put into bins as follows: If the red value was less than



Fig. 1. A sample of good and insect damaged kernel pic-
tures.

or equal to 80 the pixel was added into bin 0. If it was
larger than 250 it was added into the last bin. (Since there
were almost no pixels with Red component 80, we chose the
limit 80. We merged Red value 255 into the bin that con-
tained 250–254.) Otherwise, the pixel was added into a bin
in-between, each bin being responsible for 5 different red
values resulting with a total of 36 input features. Since the
bins with Red value less than 80 were almost always empty,
we chose to put all pixels with a Red component of less than
80 into one bin. Since there would be only one Red value
(255) in the last bin, we decided to add that to the bin for
250-254. Figure 2 shows the mean and standard deviation
of features for all the available data. We assigned output 0
to the good kernels and 1 to the insect damaged kernels.

In addition to the histogram features, we tried two other
features: the minimum, maximum and majority over 3x3
rectangles and the mean on the center of the wheat. We
also tried using, in addition to the Red histogram, mean of
Red, Green and Blue, hue, saturation, brightness and mean
x and y of CIExy. However, the results didn’t improve, so
we don’t report them here.

3. LEARNING ALGORITHMS

We used two examplar-based algorithms: k-Nearest Neigh-
bor and radial basis function (RBF) network [8], as well as
two model based algorithms: linear and quadratic models.
In order to see if regularization would help with the linear
model, we also tried weight decay. The input features for
all the algorithms werex ∈ R36 and the corresponding out-
puts werey ∈ {−1, 1}. The inputs were normalized to have

Fig. 2. The mean and standard deviation of the input fea-
tures for good and insect damaged kernels.

sample mean 0 and standard deviation 1 for each input di-
mension on the training set.

In order to get reliable figures on algorithm performance,
we used cross validation. We randomly partitioned all the
available data into a training and a test set. The training set
used 90% of data from each class and the test set used the
remaining 10%. We repeated the partitioning 10 times.

We estimated the model performance using the ROC
(Receiver Operating Characteristics) [9] and the Area Un-
der the ROC curve (AUC) [10] on the test set. In order to
obtain different False and True Positive rates on the ROC
curve, we varied the threshold of each learning algorithm.

• Linear Model : Let AN×(36+1) contain training in-
puts preceded by 1 andbN×1 contain the outputsyi

for all theN training examples. The linear model is
obtained by solving forw37×1 in the equationAw =
b. In order to solve this equation we need to invert
AT A. SinceA was not full rank,AT A was not in-
vertible. We used singular value decomposition [11]
with ε = 0.001.

If the output for a test case was smaller than a cer-
tain threshold we classified it as good and otherwise
we classified it as insect damaged. Each threshold
for the linear classifier corresponds to a point on the
ROC curve (i.e. a certain FP and TP rate). In order
to get different points on the ROC curve, we varied
the threshold for the output from -2 to 2 in steps of
0.1. For a certain threshold t and for a certain input,
if the output of the linear model was more than the
threshold, the input was classified as insect damaged,
otherwise it is classified as good. When we varied the



threshold between -2 to 2 we were able to draw the
complete ROC curve, that starts at TP and FP rates of
0 and ends at TP and FP rates of 1.

• Radial Basis Function (RBF) Network: We used
the RBF network described in [8] choosing the first
layer weights step-wise as the training example with
the worst training error. We used 20 basis units. RBF
network’s first layer does a non-linear transformation
of the inputs and then the output is determined as a
linear combination of the basis function outputs.

We used thresholds as in the linear model to get dif-
ferent ROC curve points.

• Linear Model and RBF Network Committee: We
used a linear combination of the RBF network and the
linear model outputs as the output of the committee
and the same thresholds to get ROC curve points.

• Quadratic Model: We used the inputs used for the
linear model and also the multiplication of each input
with another input.

We used thresholds as in the linear model to get dif-
ferent ROC curve points.

• k Nearest Neighbor: This algorithm needs to store
all training data. In order to classify a new data point,
first the K closest data points (K neighbors) in train-
ing data are determined. The new data point is clas-
sified as positive or negative, based on the count of
positive and negative count in the K neighbors.

The number K determines the smoothness of the k
Nearest Neighbor classifier [8]. As K increases the
classifier does a smoother interpolation. We used 5,
10, 15 and 20 as the values of K in our experiments.

In order to get different points in the ROC curve, we
varied the threshold for the output from 0 to 1. We
computed the mean of the labels of the K nearest
neighbors. If the mean is less than the threshold, we
classified a test case as good and otherwise as insect
damaged.

• Linear Model with Weight Decay Weight decay, ridge
regression and shrinkage aim at reducing the weights
and hence obtaining simple models that do not over-
fit the training data. The weight decay solution is
w∗ = (AT A + λI)−1AT y. The selection of the
weight decay parameterλ is very important. Ifλ is
very small, the weight decay doesn’t change the solu-
tion, if it is too large, the solution gets smaller in size
at the expense of bad fit to the data.

We used thresholds as in the linear model to get dif-
ferent ROC curve points.

Algorithm AUC
Linear 0.86± 0.03
RBF 0.79± 0.05

RBF and Linear Committee 0.92± 0.03
Quadratic 0.85± 0.05

5 Nearest Neighbor 0.55± 0.02
10 Nearest Neighbor 0.77± 0.04
15 Nearest Neighbor 0.79± 0.03
20 Nearest Neighbor 0.76± 0.03

Weight Decayλ = 0.002 0.86± 0.02
Weight Decayλ = 0.003 0.87± 0.02
Weight Decayλ = 0.004 0.84± 0.02

Table 1. Area Under ROC Curve (AUC) for Different
Learning Algorithms

4. RESULTS

For each of the 10 training-test set partitioning of the avail-
able data, we used the training set to train the learning algo-
rithm. We then used the test set to compute the ROC (Re-
ceiver Operating Characteristics) [12, 9, 13] curve for each
partitioning.

We interpolated the ROC curve for each partitioning
and reported the mean and standard deviation of the True
Positive Rate (sensitivity) for each False Positive Rate (1-
specificity) value for each learning algorithm [9]. The mean
and the standard deviation on the ROC curve gives us a bet-
ter idea on the performance of an algorithm. In order to get
a reliable mean, we discarded the ROC curve with the max-
imum and minimum AUC and computed the average ROC
curve using the 8 remaining ROC curves. Please see table 1
and figure 3.

Because of its simplicity and performance linear model
seems to be the best single algorithm. The nearest neighbor
was the worst algorithm, regardless of theK of the nearest
neighbor. The RBF and linear model committee performed
the best.

5. DISCUSSION

We used a number of learning algorithms to classify good
and insect damaged wheat kernels and we found out that the
regularized linear model performed the best. Additional in-
formation about the kernels such as reflectance images or as
compression force or conductance measurements [6] could
be used to improve performance of a single classifier. An-
other approach is to train different classifiers with each of
these features and then combining them [14].



Fig. 3. Performance of Different Learning Algorithms.
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